(Peromyscus leucopus) Do Not Affect Reproductive Photoresponsiveness Tau Differences between Short-Day Responsive and Short-Day Nonresponsive White-Footed Mice

نویسندگان

  • Sean B. Majoy
  • Paul D. Heideman
چکیده

In laboratory-bred rodent populations, intraspecific variation in circadian system organization is a known cause of individual variation in reproductive photoresponsiveness. The authors sought to determine whether circadian system variation accounted for individual variation in reproductive photoresponsiveness in a single, highly genetically variable population of Peromyscus leucopus recently derived from the wild. Running-wheel activity patterns of male and female mice, aged 70 to 90 days, from artificially selected lines of reproductively photoresponsive (R) and nonresponsive (NR) lines were monitored under short-day photoperiod (8 h light, 16 h dark), long-day photoperiod (16 h light, 8 h dark), and constant darkness (DD). NR mice displayed a significantly longer mean free-running period (24.08 h) in DD compared with R mice (23.75 h), due in large part to a difference between NR and R females (24.25 h vs. 23.74 h, respectively). All other entrainment characteristics (alpha, phase angle of activity) under short days, long days, and DD were similar between R and NR mice. Variation in freerunning period and entrainment characteristics has been shown to affect photoresponsiveness in other rodent species by altering the manner in which the circadian system interprets short days. To determine whether variation in photoresponsiveness in P. leucopus is due to differences in free-running period instead of variation downstream from the central circadian clock in the pathway controlling photoresponsiveness, the authors exposed young R and NR mice to DD and measured the effect on reproductive organ development. If variation in free-running period affected how the circadian system of mice interpreted short days, then both R and NR mice exposed to DD should have exhibited a delay in gonadal development. Only R mice exhibited pubertal delay in DD. NR mice exhibited large paired testes, paired seminal vesicles, paired ovaries, and uterine weight typical of mice nonresponsive to short days, whereas R mice exhibited reproductive organ weight typical of mice responsive to short days. These data suggest that despite significant differences in free-running period between R and NR mice, individual variation in photoresponsiveness is not due to differences in how the circadian systems of R and NR mice interpret the LD cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enrichment and photoperiod interact to affect spatial learning and hippocampal dendritic morphology in white-footed mice (Peromyscus leucopus).

In seasonally changing environments, individuals must coordinate endogenous processes with ambient conditions. Winter is a challenging time to survive and reproduce. In order to anticipate decreased food availability and low temperatures in winter, many rodents use decreasing day lengths as a precise temporal cue. Short day lengths alter several adaptations, including reproduction, immune funct...

متن کامل

Social environment modulates photoperiodic immune and reproductive responses in adult male white-footed mice (Peromyscus leucopus).

Social cues may interact with photoperiod to regulate seasonal adaptations in photoperiod-responsive rodents. Specifically, photoperiod-induced adjustments (e.g., reproduction and immune function) may differ among individuals in heterosexual pairs, same-sex pairs, or isolation. Heterosexual cues may be more influential, based on their potential fitness value, than same-sex cues or no social cue...

متن کامل

Testosterone and photoperiod interact to affect spatial learning and memory in adult male white-footed mice (Peromyscus leucopus).

Gonadal hormones affect spatial learning and memory in mammals and circulating gonadal hormone concentrations fluctuate by season. Most nontropical rodents are spring/summer breeders and males display higher testosterone concentrations during the breeding season compared with the nonbreeding season (fall/winter). Seasonal patterns of testosterone concentration (as well as many other seasonal mo...

متن کامل

Variation in levels of luteinizing hormone and reproductive photoresponsiveness in a population of white-footed mice (Peromyscus leucopus).

Natural genetic variation in reproduction and life history strategies is a manifestation of variation in underlying regulatory neuronal and endocrine systems. A test of the hypothesis that genetic variation in luteinizing hormone (LH) level could be related to a life history trait, seasonal reproduction, was conducted on artificial selection lines from a wild-source population of white-footed m...

متن کامل

Genetic variation in male sexual behaviour in a population of white-footed mice in relation to photoperiod.

In natural populations, genetic variation in seasonal male sexual behaviour could affect behavioural ecology and evolution. In a wild-source population of white-footed mice, Peromyscus leucopus, from Virginia, U.S.A., males experiencing short photoperiod show high levels of genetic variation in reproductive organ mass and neuroendocrine traits related to fertility. We tested whether males from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000